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Lagrangian statistical results are presented from numerical simulations of an ensemble 
of fluid particles which were generated from a two-dimensional pseudospectral code. 
The single-particle results are in qualitative agreement with previous simulations on 
a lower-resolution grid. The two-particle, relative velocity correlations were found to 
fall off more rapidly than the single-particle correlations for short to intermediate 
times due to large-scale eddy advection in the single-particle case. The temporal 
behaviour of the mean square relative separation, (&), is analysed for short to inter- 
mediate times and is found to be consistent with scaling arguments based on 
Kraichnan’s expression for the non-local strain acting in the high-wavenumber 
enstrophy cascade spectral range. For longer times, (&,) exhibits tn behaviour. The 
power-law region is associated with the locally determined strain rates which charac- 
terize a backward energy-cascade spectrum. 

1. Introduction 
While the study of dispersion phenomena in two-dimensional turbulence is inter- 

esting as a check on concepts regarding dispersion in three-dimensional turbulence 
(e.g. scaling, localness of transfer processes), practical concern for the problem stems 
from the fact that, over a large range of length scales, motions in the atmosphere may 
be regarded as ‘quasi ’-two-dimensional (Charney 197 1). Thus, studies of dispersion in 
a two-dimensional turbulence model should provide valuable information pertaining 
to atmospheric flows, and possibly oceanic flows. 

Previous studies in dispersion phenomena have centred primarily on the single- 
particle problem in two and three dimensions and on the two-particle problem in three 
dimensions. Monin & Yaglom (197 1) and Tennekes & Lumley (1  972) review the basic 
principles of the subject. Numerical simulation studies of the process have been 
presented by Deardorff & Peskin ( 1  970) and Peskin ( 1974), while theoretical models 
have been developed by Pismen & Nir (1978) and Kraichman (1974) among others. 
Although it is well known that Richardson’s t 3  law applies to the average squared 
relative separation in three dimensions, the situation in two dimensions has been less 
clear. In the inertial sub-range in three dimensions, the straining of eddies (a source of 
relative motion) is primarily a local interaction in that eddies of a given size are being 
strained, for the most part, by only slightly larger eddies (Tennekes & Lumley 1972). 
In  two dimensions, however, the strain rate interactions appear to be partially non- 
locally determined for the smaller scales in the field and more locally determined for 
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larger scales (Kraichnan 1971). Thus one would expect a difference in behaviour for 
the mean square relative separation between the range of scales over which the strain 
rate appears nearly constant with respect to relative distance (or wavenumber) and 
those larger scales where the strain rate becomes dependent on the relative distance 
over which it acts. The present study is an attempt to clarify the relative dispersion 
problem for two-dimensional turbulence by obtaining Lagrangian fluid particle 
trajectory statistics from a numerically integrated turbulent flow fleld. Lagrangian 
relative velocity correlations and dispersion rates are obtained by averaging over an 
ensemble of fluid particles. The results are then analysed with some simple scaling 
arguments. 

2. Description of the Eulerian field simulation 
The technique for the simulation of the two-dimensional flow field is due to Orszag 

( 1  976). The system of equations employed is the familiar stream function-vorticity 
formulation of the Navier-Stokes equations for two-dimensional incompressible flows. 
1.e. 

where [(x, y, t )  is the vorticity, @(x, y, t )  is the stream function and the two are related by 

5 = -Q2+. (2.2) 

For a homogeneous flow, the appropriate boundary conditions are periodic, i.e. 

+ 2nn, y + 2nm, t )  = 5(x, Y, t ) ,  

@(x+2nn,y+27rnm,t)=+(x,y , t )  (n ,m=O,  k l , . . . )  (2.3) 

and 5 and @ may be expanded in Fourier series to yield the spectral forms of (2.1) 
and (2.2) 

P and Q are the maximum wavenumbers used in the simulations. In  our computer runs 
these were taken to be P = Q = 64 for the preliminary runs and P = Q = 256 for the 
final run, corresponding to 128 x 128 and 512 x 512 physical space grids respectively. 

The scheme represented by (2.4) with boundary conditions (2.3) is solved by an 
efficient pseudospectral method which fast Fourier transforms the factors in the 
nonlinear terms into real space, multiplies them, and transforms the result back into 
Fourier space without having to evaluate (2.5) directly. Aliasing errors are eliminated 



Relative dispersion in two-dimensional decaying turbulence 47 

128 x 128 
w 
t = O  t = 2.0 

Large-scale Reynolds number, R 800 600 
Total enstrophy, Sz 19.8 12.5 
Total energy, EToT 0.97 0.93 
Dissipation wavenumber, k, 34.9 38.9 - 
Viscosity, v 0.001 

Initial injection wavenumber, k, # 
Time step, At 0.004 

512 x 512 
, 
t = O  t = 2.0 

21 000 8500 
20.9 18.3 

1.22 1.23 
75.6 119 

I 

0~0001 
0.001 
4 

TABLE 1. Eulerian field parameters. 

with an efficient truncation scheme (Patterson & Orszag 1971). The time marching of 
(2.4) is accomplished by using a leap-frog scheme for the nonlinear term and a Crank- 
Nicholson scheme for the diffusive term. 

The initial values of the Fourier components of the stream function field were 
chosen to be Gaussian distributed with an initial energy spectrum given by 

E ( k )  = v:(k/k,) exp ( - k/k,) ,  (2.6) 

with vo = 1 and k, = 8. The scales of vo and the box length d = 2n determine the basic 
units of length and time for the measurements reported here. This initialization 
procedure does not guarantee isotropy in the larger scales of the field so that the 
simulation should be considered to be one realization of an isotropic ensemble. 

The band-averaged modal energy-spectrum coefficient is measured as 

E ( k )  = 2 lkI2$(k)$(k)*, k - @ k  < Ikl < k + i A k  (2.7) 
lkl 

and the enstrophy spectrum as 

with k = ( p ,  q)  and Ak equal to the bandwidth. The total energy is then 

ETOT = E E ( k )  Ah, (2.9) 
k 

and the Reynolds number may be defined as 

= El'OT/(vq') (2.10) 

with 7 equal to the enstrophy dissipation rate. The relevant parameters for both the 
preliminary 128 x 128 and final 512 x 512 simulations are given in table 1. For 
simplicity, the 128 x 128 run will be labelled as R128 and the 512 x 512 run will be 
labelled 8512 in most of what follows. 

3. Eulerian field results 
Batchelor (1969) and Kraichnan (1967) have postulated that two-dimensional 

turbulence should display two distinct asymptotic spectral regions for large Reynolds 
numbers. If energy and enstrophy are injeated into the flow around a given wave- 
number, ko say, then the net transport of energy is towards wavenumbers less than k, 
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and the net transport of enstrophy is towards wavenumbers greater than k, up to 
k, = (rj/v3)s, beyond which enstrophy is dissipated at rate 7. 

The proposed asymptotic forms for these two spectral regions are 

E(k )  = cdk-* (k < ko) (3.1) 

E(k)  = ~ ' $ k - ~  (k > k,) (3.2) 

for the backward energy-cascade region of the spectrum and 

for the enstrophy cascade region; B is the rate at which energy is transferred through 
the k-k region of the spectrum. 

Other proposed forms for the enstrophy cascade spectrum include a k-4 spectrum 
(Saffman 1971) and a logarithmically corrected k3 spectrum (Kraichnan 1971). 
Figure 1 shows the energy spectrum that evolved for R512 at t = 2.08 along with the 
initial energy spectrum. The results, averaged over wavenumber bands of width 
Ak = 4, indicate a build-up of energy in the low-wavenumber region with sufficient 
transport of energy to the right to  allow enstrophy to be transferred to high wave- 
numbers (the net transport of energy being to the left). This was expected since there 
is no mechanism in the model for the removal of energy at low wavenumbers nor for 
the injection of energy and enstrophy at intermediate wavenumbers. The empirical 
result shown in figure 1 does not indicate a clear choice between a logarithmically 
corrected k-3spectrum and a k-4 spectrum and, considering the difficulties in achieving 

FIGURE 1. Energy spectra for R512. Circles are the initial spectrum. 
Points are the spectrum at t = 2.08. 
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asymptotic spectral levels even in high-resolution experiments, the results cannot be 
considered to be a confirmation of any particular proposed asymptotic spectrum. In  
spite of this restriction, however, R512 does yield a self-similar enstrophy cascade 
spectral region of approximately asymptotic form and much can be said about the 
relative separation process over distances corresponding to that region. Moreover, 
because of the energy and enstrophy conservation constraints which apply to two- 
dimensional turbulence (Batchelor 1953), there is a local interaction reverse energy- 
cascade spectral region, although it is neither asymptotic nor self-similar in this 
simulation. 

Vorticity maps for R512 are shown in figure 2(a, b) at times t = 0.04 and t = 1.24 
respectively. The contour intervals at both times were the same and the results were 
reduced to 128 x 128 grid points by taking every fourth point in z and y. The vorticity 
contours qualitatively illustrate the amplification of vorticity gradients which occurs 
in two-dimensional turbulence; i.e. the transfer of vorticity to smaller scales (Batchelor 
1969). 

The results for the enstrophy dissipation rate r] and total enstrophy SZ as a function 
of time are shown in figures 3 (a) and ( c )  respectively: r ]  is generally larger for R128 than 
for R512 since the viscosity is ten times larger for the lower-resolution run. The total 
enstrophy for R512 decayed by about 14 yo of its initial value over the time of the 
simulation compared with 36 yo for R128 for the same period. 

A two-dimensional skewness may be defined by 

where cis the vorticity (Herring et al. 1974). S is a measure of the rate of production of 
mean square vorticity gradients by nonlinearity and its levelling off in time indicates 
that the decay at large wavenumbers has become self-similar. Figure 3 (b) shows the 
variation of S with time for R512 and it indicates that large-wavenumber self-similarity 
occurred at  about t = 0.6. 

4. Simulation of the Lagrangian field 

numerically integrating the equation for the fluid-particle trajectories 
Lagrangian fluid-particle statistical information for the flow field was obtained by 

a 
v ( a , t )  = - X ( a , t )  at = U ( X ( a , t ) , t ) ,  (4.1) 

where v ( a , t )  is the Lagrangian velocity of a fluid particle at time t which was a t  
position a at time t = 0.0. X ( a , t )  is the particle’s position at time t and U is the 
Eulerian field velocity at the particle’s current position in the field at a given time. 
The velocity of a particle is then updated a t  the next time step using its new position 
and the time-stepped Eulerian velocity a t  that position. Velocities between grid points 
in the Eulerian field are retrieved by using a bivariate, four-point, linear interpolation 
scheme which collocates with the four surrounding grid points, i.e. 

U@, + ah, ?/j + Ph, t )  = (1  - 4 (1 -P )  u,,j + 4 1  - P )  Ui+l,j + A 1  - 4 Ui,j+l 

+olPUi+l,j+l+ W2), (4.2) 
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(b ) 

FIGURE 2. Vorticity contours for R512 at (a)  t = 0.04 and (71) t = 1-24. 
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FIGURE 3. Eulerian field variables: (a) enstrophy dissipation rate for R612 (circles) and R128 
(points), (b) skewness, (c) enstrophy for RS12 (circles) and R128 (points). 

where Ui,r = U(x$, yj, t) is an Eulerian velocity component at (zt, y,), 

= 14+1-xi1 = lYi+l-Yil 

is the grid interval and a and /3 are the fractional grid displacements in the x and y 
directions respectively. 

Statistical information regarding the Lagrangian field was obtained by averaging 
over an ensemble of 1024 fluid elements which were initially placed in a 32 x 32 
rectangular array on the computational grid. The initial spacing between adjacent 
pairs of elements was 12 grid intervals for R512 and 3 grid intervals for R128, corre- 
sponding to an initial separation distance of IAI = 0.147 for each of the 1984 possible 
adjacent particle pairs in the simulation. This distance matches a wavenumber of 
about k N 2n/lAI N 43, which is considered to be at the high-wavenumber end of the 
enstrophy cascade region of the energy spectrum for the larger simulation. Because of 
the cyclic nature of the boundary conditions, particles which wandered outside the 
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box 0 < x < 2n, 0 < y < 27r were assigned Eulerian velocities corresponding to their 
positions modulo the box size. For example, 

] (4.3) 
U ( x ,  y, t )  = U ( x  mod (k), y mod (2n), t ) ,  (x > 0, y 2 O), 
U ( x ,  y, t )  = V ( x  mod (2n) + 2n, y mod (2n) + 2n, t ) ,  (x < 0, y < 0) .  

The particle tracking was begun at  t = 0.6, the time at which the two-dimensional 
skewness factor defined in 8 3 began to level off. The initial velocity of each particle 
was that of the Eulerian field at its initial position. 

'5. Lagrangian results 
(a) Single-particle statistics 

The Lagrangian single-particle statistics for two-dimensional turbulent flows were 
analysed previously by Peskin (1974) using a (64)2 grid size Eulerian field simulation 
developed by Lilly (1969, 1972). The measured single-particle results from the present 
simulation are comparable and are presented for qualitative contrast to the two- 
particle results presented below. 

The Lagrangian single-particle velocity auto-correlation, a measure of the degree of 
correlation of a fluid particle's velocity at  time t with its velocity at a later time t + 7 ,  

is defined as 

where the brackets denote ensemble averages over the set of 1024 fluid particles. 
Figure 4 (b) is a plot of pig1 us. 7 for the (512)2 run up to the final tracking time of 
7 = 1.48 and figure 5 (b) shows ppl for the (128)2 run up to 7 = 6.0 (the maximum lag 
time for R128 was 7 = 8.0). 

The correlations exhibit the characteristic parabolic shape at the origin but more 
important, although the correlations show a continuously decreasing average value 
with superimposed fluctuations, the curves retain mean positive behaviour for a rather 
prolonged period. This indicates that the single-particle statistics are strongly charac- 
terized by the mean advective effects of the largest eddies in the flow. That is, the 
particles are being swept along by the mean, unidirectional velocities characteristic 
of the large eddies until sufficient time has elapsed to allow the large-scale features of 
the flow to change. This is further corroborated by a measurement of the mean square 
single-particle displacement us. time, (Y:~,) = (XZ,) +(Xi), depicted in figure 6 (b) on 
a log-log scale. The initial t 2  dependence indicates that the particles are being carried 
along at a relatively constant velocity for short times after release. For very large 
times the curve approaches a linear dependence on f = t - 0.6, indicating statistical 
independence and lack of correlation in the particle velocities. The results are consistent 
with Taylor's (1921) ideas of single-particle dispersion and a spectral formulation of 
the problem (Batchelor 1950) which clarifies the importance of the low-wavenumber 
eddies in single-particle dispersion. 

The correlation fluctuations observed in figure 5 at 7 = 1.8 might possibly be due 
to the large-scale anisotropy in the field. We have not identified any specific physical 
basis for these fluctuations. 
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FI~URE 4. Lagrmgim velocity auto-correlation for R512 for (a) relative 
dispersion and (a) single-particle dispersion. 
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FIQURE 6. Lagrangian velocity auto-correlation for R128 for 
(a) relative dispersion and (b)  single-particle dispersion. 
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FIGURE 6. (a) Mean square relative displacement for R128 and 
(a) mean square single-particle displacement for R128. 

( b )  Two-particle results 

The difference between the statistics of single-particle and two-particle systems 
is similar to the situation in the classical treatment of systems of particles in which 
the motions of pairs of particles are resolved into a centre-of-mass motion and a 
relative motion. Taking the difference in the trajectories or velocities of pairs of 
particles effectively eliminates the common motion between them, revealing the more 
physically significant internal interactions between fluid parcels. Figures 4 (a)  and 
5(a) show plots of the relative velocity auto-correlation coefficient vs. time defined 
b s  

where wi = vai - vbi is the ith component of the difference velocity between particles 
a and b in a pair. The brackets denote an ensemble average over the 1984 initially 
adjacent particle pairs of initial separation A .  Comparison with figures 4 (b) and 5 (b) 
shows a much more rapid fall-off in the dual particle correlations reflecting the absence 
of enhancement due to mean advection by large-scale eddies which characterized the 
single-particle problem for small to intermediate times. 
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FIGURE 7. Mean square relative diaplactement for R128. 

The mean square relative separation is (&) = ( Y:) + (YE) with & = YaC - & and 
(Yq) is related to pT1 by 

/:(wq(A, t))a(wq(A,t+7))6p~*(t ,7,  A)&. (5.3) 
1 a p )  -2= 
2 at 

The variation of (eel) in time for the (128)2 run is plotted in figures 6(a) and 7. 
Figure 7 shows a short exponential region from (&) = 0.03 to 0.17 corresponding to 
wavenumbers k = 36 to 15 and times I? = 0.16 to P = 0.6 respectively. For larger times, 
figure 6 (a) indicates that the average squared relative separation changes over to tn 
behaviour, where n reached a maximum of approximately 2-3 between (rkl) = 0-28 
and 1.4 corresponding to wavenumbers 12 to 5 and times 0.7 to 2.0 respectively. For 
very large times, and separation distances slightly less than the box size, (rk,) appears 
t o  be approaching a linear dependence on I?, indicating that, on the average, the two 
material points in each pair are wandering independently. The behaviour of (r:el) for 
short to intermediate times may be analysed in terms of the effective strain rate acting 
on an eddy of size 8r N (rkl)6 insofar as the turbulence may be regarded as isotropic. 
A quantitative analysis is taken up below. 

The probability distributions of relative displacements in the x direction, pP1(t, t", 8) 
of the pair ensemble at  trajectory times t" = 0-25 and t" = 1-37 are depicted in figures 8 (a) 
and (b) as a function of the standard deviations s at those times. Compared to Gaussian 
distributions of the same standard deviation, the curves indicate that the particle pairs 
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spend relatively little time (low probability) in portions of the distributions corre- 
sponding to rapid separation rates. The Gaussian distribution represents a linear 
dependence of (eel) on time corresponding to statistically independent random motion 
for each particle in a pair. 

Figure 9 shows (wLl), the total relative mean square velocity, as a function of time. 
In  particular, if we assume that (wzl) - (d(&)/dt)2 (which implies weak correlation 
between relative displacement and relative acceleration) then the results show that 
(dmJ develops exponential and power-law regions at times corresponding to similar 
regions for (rL1). In the power-law region of figure 9 (from about f = 0-7 to 2.0), 
(w:~,)  - Po, whereas one would expect an exponent of about from the scaling 
estimate. 

6. Analysis of the relative separation 

Kraichnan (1971) has given a simple dynamical argument which leads to a logarith- 
mically corrected k-s energy spectrum for the enstrophy cascade range in two- 
dimensional isotropic turbulence. The correction preserves a constant, k-independent 
enstrophy transfer rate and compensates for the effect of the non-local nature of the 
enstrophy transfer process on the form of the energy spectrum. Kraichnan aasumes 
that the effective strain rate w(k)  acting to distort eddies of scale l/k is given by 

F k  

since effects of wavenumbers $ k should average out over scales l / k  and times o-'(k). 
I n  fact, the validity of this argument depends strongly on the form of E(k). For a k-s 
spectral range, however, w2 diverges logarithmically for small ko, which suggests that 
the major contribution to the integral in (6.1) comes from wavenumbers c k and that 
the straining process is strongly non-local for eddies at large wavenumbers. 

It is useful to employ Kraichnan's expression for the energy spectrum 

in (6.1) in order to illustrate analytically the overall dependence of wz on k and its 
effect on the behaviour of the mean square relative separation in time. This yields 

where the proportionality constants have been absorbed into D'. A rough numerical 
calculation of w2 was also obtained from the band-averaged points of the spectrum in 
figure 2 in the region of interest (k N 5-36) and the behaviour is comparable to that of 
(6.2). 

Given that the vorticity of each fluid element is an invariant of the motion in two- 
dimensional turbulence, it seems reasonable to associate the relative velocity of 
particle pairs with the transfer of enstrophy in the enstrophy cascade range, since it is 
a relative velocity which causes a change in scale from one wavenumber to another. 
This implies that the relative velocity in a similarity enstrophy cascade range should 
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FIGURE 8. Probability density distribution of relative displacements for 
R128 at (a) t = 0.25 and (b) = 1.37. 
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FIGURE 10. Mean square relative displacements for R128 ( x ) and R512 (points). 
The circles represent the approximation to the R512 data from (6.4). 
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depend only on the eddy size at a given wavenumber 6r - l / k  and the effective strain 
rate acting to distort eddies of that size, i.e. 

w a  Srw(8r). (6.3) 

Using (6.2) in (6.3) with w = d(Sr)/dt yields an expression for the mean square 
relative separation 

(rkl) = (&)2 = (6r,)2exp (-2{$(#D')4r])(.fo-f)}*) (Sr< 8 ~ 0 )  (6.4) 

Here to is the time required for an average pair to separate to the enstrophy injection 
size Sr, N l/k,. The proportionality constant in (6.3) wm absorbed into D .  

Given the asymptotic spectrum used, it is still instructive to compare (6.4) with the 
numerical results. Figure 10 shows (6.4) with the results from the (512)2 simulation. 
(Sr,)2 was chosen to be 1-52 at to = 1.4 corresponding to k 21 5 ;  near the lowest wave- 
number for which a tn region was observed. r] was chosen to be 1.96 at the intermediate 
tracking time off = 1.Owhile D'was chosen to give a best fit for thesmallestseparation 
distances (high wavenumbers). Other choices for 6r, and .fo give similar results with 
slightly varying values for D .  The value obtained for D' corresponding to the fit in 
figure 10 with r ]  = 1-96 was 1.46, which is somewhat lower than the energy spectrum 
coefficient, D' = 2.626, computed by Kraichnan (1971) from an almost-Markovian 
Galilean-invariant turbulence model. If, on the other hand, r] is chosen to be 1.0, its 
value at  t = 0.0 (near the region where D' is chosen to give a best fit to the data) then 
we get the same theoretical curve in figure 10 but with D' = 2.28. 

The fit deviates from the experimental results near Sr, - l/k,, where the strain rate 
w(k) ,  (6.1), isnot expectedtobeacaurateandnear Sron theorder oftheinitialseparation 
distance. The latter deviation is due to the fact that the ensemble of pairs were released 
with identical separation distances and had not had sufficient time to develop a 
probability distribution that was not strongly dependent on the initial artificially 
spiked distribution. In  general, however, (6.4) is a good overall fit to the data and it 
demonstrates explicitly through its dependence on Sr, that the behaviour of the mean 
square particle separation for small to intermediate distances and times is not locally 
determined. It is also clear from (6.2) that, since w ( k )  does not approach a constant 
value for k- t  a, can never exhibit a pure e y t  (y  constant) behaviour corresponding 
to asympotically large k in an enstrophy cascade range. 

For larger times and separations (6.4) indicates that is influenced by locally 
controlled strain rates; i.e. d ( k )  is a strong function of k. This leads to a tn behaviour 
for (6r)2.  The possibility of the dependence of (rtel)  on local or non-local transfer 
mechanisms was pointed out by Peskin (1973). Specifically, it  is conceivable that 
the strain present as a result of energy transfer in the smaller-wavenumber regions 
forms a large-scale strain field when observed from within the enstrophy transfer 
region. Thus, for smaller wavenumbers in the enstrophy transfer region, the relative 
separation process may be similar to the process in three dimensions with applied 
shear. In  that caae the mean square separation goes as t3 (Corrsin 1959). For wave- 
numbers less than k,, energy transfer is approximately local in two dimensions and 
one would also expect to observe t3 behaviour for two-particle separations. In this 
context, it  is interesting to note that the scheme represented by (6.1) and (6.3) 
with k, = 0 yields a t3 dependency for ( r X )  for a k-8 energy cascade spectrum. We 
emphasize, however, that only the tendency towards power-law behaviour was 

3 F L M  I09 
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observed experimentally and that the numerical results for the power-law region 
are not mymptotic. For long times and separations, this type of process would only 
hold until two points become statistically independent, at which time the meansquare 
separation would be proportional to time. 

The authors would like to thank Steven Orszag for his helpful discussions and the 
use of his KILOBOX code. Stimulating discussions with J.Herring are gratefully 
acknowledged. This research was supported by the Global Atmospheric Research 
Program, National Science Foundation (grants ATM76-18899 and ATM79-0164), and 
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Appendix. Discussion of inaccuracies 
Since it was not possible to obtain more than one realizstion of the Eulerian %ow 

field due to the computational restriction imposed by the number of points to be 
processed in the (512)2 run, the members of the ensemble of points (or pairs) are not 
necessarily statistically independent except over distances comparable to an integral 
length scale of the turbulent field. This type of error probably affects the large sepa- 
ration results more severely since there are fewer large-scale eddies on the field than 
small-scale ones. An experimental estimate of this type of error was obtained by 
repeating the statistical calculations using one quarter of the original number of 
particle pairs. The deviations in the statistics are shown as error bars in figures 4(a) 
and 10. First-order Taylor-series analysis indicates that errors due to interpolating 
the particle trajectories and velocities between grid points and time steps are no 
greater than the inaccuracies accumulated in the representation of the Eulerian field 
on the (512)2 grid. 

Technioctlly, of course, (6.4) is applicable only to statistically steady (7 constant) 
turbulence. Although a time-dependent 7 could have been included in the analysis in a 
continuous sense, it was felt that this would have unnecessarily masked the more 
important features of the analysis. 
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